

# UNDERSTANDING FACIAL AGING

*Laura Masini, JetPeel by TavTech Global Educator*

## **ABSTRACT**

Facial aging is a progressive, multidimensional process, where gradual remodeling of bone, soft tissues, fat compartments, and muscle dynamics alters facial support and mechanical balance. This “inside-out” process precedes visible surface manifestations. As structural support and biological efficiency decline, the skin’s capacity for repair and adaptation is reduced. The visible signs of facial aging represent the combined effect of structural remodeling, mechanical stress, biological changes, and environmental influences acting together.

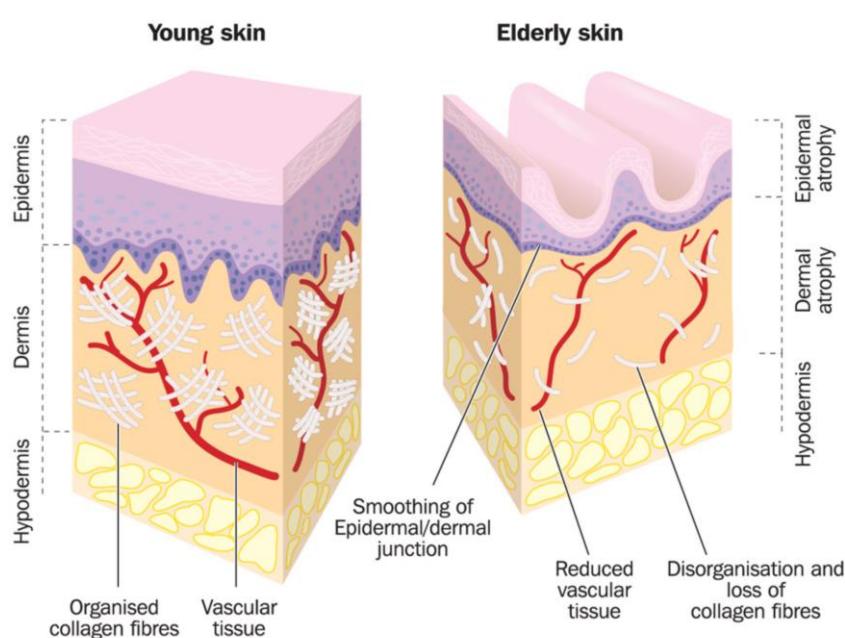
## **INTRODUCTION**

Facial aging can be described as a gradual weakening of the system that supports and stabilizes the face. As this support becomes less efficient, facial tissues struggle to manage the forces created by everyday movement and gravity. When support is reduced, mechanical stress is no longer evenly distributed. Instead, it concentrates within the soft tissues and at the skin surface, where recovery is slower and less effective. Over time, this leads to visible changes such as reduced firmness, tissue laxity, and wrinkle formation, which reflect functional adaptation to increased mechanical strain rather than isolated skin problems.



**Figure 1. Skeletal changes with facial aging**

Age-related craniofacial bone remodeling reduces structural support in the orbit, midface, maxilla, and mandible, contributing to visible facial aging.  
Image source: Mendelson B, Wong C. Changes in the Facial Skeleton with Aging: Implications and Clinical Applications in Facial Rejuvenation. *Aesthetic Plastic Surgery*, 2020; 44:1151–1158.




**Figure 2. Facial soft-tissue layers and fat compartments**

This image shows facial muscles and the distribution of superficial and deep fat compartments, illustrating how support, volume, and movement contribute to facial structure and aging. Image source: The Fat Compartments of the Face: Anatomy and Clinical Implications for Cosmetic Surgery, *Plastic and Reconstructive Surgery*, 2007; 119(7):2219–2227.

## DIMINISHED SKIN QUALITY

Diminished skin quality develops as a direct consequence of facial aging, as progressive structural remodeling reduces the support system underlying the skin. Changes in bone structure, connective tissue stability, and biological efficiency weaken facial support, altering how mechanical forces generated by movement and gravity are distributed. At the same time, the skin's intrinsic capacity to adapt and regenerate decreases. The progressive degradation of collagen, elastin, and hyaluronic acid, together with changes in facial fat compartments and underlying bone support, reduces tissue resilience and recovery potential. Clinically, this results in reduced radiance, uneven texture, and visible signs of cutaneous fatigue or stress.



**Figure 3. Structural differences between young and elderly skin**

Conceptual schematic illustration showing age-related structural differences between young and elderly skin across the epidermis, dermis, and hypodermis. The illustration highlights epidermal thinning, flattening of the dermal–epidermal junction, reduced vascularization, disorganization and loss of collagen fibers, and changes in connective tissue architecture associated with aging.

Image source: Conceptual educational illustration based on established dermatological and histological literature on skin aging.

### **INCREASED SOFT TISSUE LAXITY**

Increased soft tissue laxity develops as facial support gradually weakens with aging. As connective tissues lose strength and elasticity, the face becomes less able to maintain firmness and stability. As this support system declines, facial tissues are less efficient at absorbing movement and returning to their resting position. Although facial muscles continue to move throughout life, tissue recovery after contraction becomes slower and less effective. Mechanical stress therefore accumulates within the tissues instead of being released over time. Clinically, this process appears as reduced firmness and tone, lower tissue density, and visible laxity, which often becomes more noticeable during fatigue or prolonged facial activity. These changes reflect a gradual loss of functional tissue tension associated with facial aging.

### **FORMATION OF RHYTIDES (WRINKLES)**

Rhytides develop as a direct consequence of facial aging, as the skin progressively loses elasticity, structural support, and regenerative capacity. Repeated facial movements generate mechanical stress that, in youthful skin, can be absorbed and released. With aging, reduced collagen and elastin integrity limits this recovery, allowing mechanical forces to become progressively fixed along lines of movement. Clinically, this process appears first as fine lines, followed by dynamic wrinkles during expression and, over time, static wrinkles visible at rest. Wrinkles therefore reflect the cumulative effect of repeated mechanical stress acting on skin with diminished repair efficiency.

### **VOLUME REDISTRIBUTION OR DEFLATION**

Volume redistribution or deflation results from progressive structural remodeling associated with facial aging rather than uniform tissue loss. Bone resorption reduces the internal scaffold supporting soft tissues, while deep fat compartments lose stabilizing function and superficial fat becomes more mobile under gravitational influence. These changes alter facial mechanical balance, leading clinically to deflation in some areas and relative fullness in others, with altered contours and proportions. Volume redistribution often accentuates laxity and wrinkles, contributing to a more fatigued or aged facial appearance.



**Figure 4. Progressive Facial Aging: Volume Deflation**

Illustration of the progressive sequence of facial aging characterized by volume deflation of deep and superficial facial fat compartments. Early volume loss occurs in specific regions, followed by more extensive involvement across the face. This progressive deflation reduces structural support, alters facial contours, and contributes to tissue laxity, wrinkle formation, and visible skin aging.

Image source: Image adapted from clinical and anatomical literature on facial aging and facial fat compartment deflation, presented at Plastic Surgery – The Meeting, San Diego (2013).

#### **NON-INVASIVE SUPPORT FOR CUTANEOUS ADAPTATION DURING STRUCTURAL FACIAL CHANGE**

As facial aging progresses, structural remodeling increases mechanical stress on the skin and reduces its regenerative and repair capacity. This leads to diminished skin quality, tissue laxity, wrinkle formation, and volume alteration. Environmental stressors further accelerate these changes by impairing hydration, protein stability, and extracellular matrix function. Within this context, JetPeel by TavTech represents a non-invasive, non-contact approach specifically suited for biologically compromised and aging skin. When combined with JetCare Med by TavTech formulations enriched with osmolytes, it actively supports skin hydration, a fundamental requirement for maintaining biological efficiency in aging tissues, while invigorating collagen and elastin, protecting peptides, and stabilizing proteins at a time when protein degradation and functional decline are increasingly prominent. By preserving hydration and protein integrity without introducing mechanical or inflammatory burden, this non-invasive strategy supports skin quality, tissue elasticity, and overall skin function. It assists the skin's capacity to adapt to progressive structural facial change and persistent environmental stressors, reinforcing functional balance rather than attempting surface-level correction.



**Figure 5. Non-Invasive JetPeel Treatment Application**

Clinical image illustrating a facial treatment performed using JetPeel non-invasive, no-contact technology. The treatment enables controlled trans-epidermal interaction without needle penetration or mechanical trauma, making it suitable for use on biologically compromised skin and in the context of facial aging. Image source: Clinical image showing a JetPeel treatment performed using JetCare Med formulations, provided by TavTech Ltd., used for educational and illustrative purposes.

## CONCLUSION

Facial aging results from the progressive interaction between structural remodeling, mechanical forces, and functional adaptation across all facial layers. The skin is the final interface where these cumulative changes become visible. Understanding surface alterations within this integrated anatomical and biological process allows non-invasive approaches to be positioned realistically—not as corrective solutions, but as supportive strategies that respect tissue integrity and functional balance. Within this context, JetPeel by TavTech represents a non-invasive treatment that supports cutaneous function and homeostasis during structural facial change, assisting adaptation without adding mechanical or inflammatory stress.